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ABSTRACT
This paper highlights SSC San
Diego contributions to the
research and development of
hyperspectral technology. SSC San
Diego developed the real-time,
onboard hyperspectral data
processor for automated cueing of
high-resolution imagery as part of
the Adaptive Spectral Reconnais-
sance Program (ASRP), which
demonstrated a practical solution
to broad area search by leveraging
hyperspectral phenomenology.
SSC San Diego is now implement-
ing the ASRP algorithm suite on
parallel processors, using a
portable, scalable architecture
that will be remotely accessible.
SSC San Diego performed the
initial demonstrations that led to
the Littoral Airborne Sensor
Hyperspectral (LASH) program,
which applies hyperspectral
imaging to the problem of sub-
marine detection in the littoral
zone. Under the In-house Lab-
oratory Independent Research
(ILIR) program, SSC San Diego
has developed new and enhanced
methods for hyperspectral analysis
and exploitation.
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INTRODUCTION
The optical spectrum is generally considered to include the ultraviolet
(200 to 400 nm), the visible (400 to 700 nm), the near infrared (700 to
1100 nm), and the short-wave infrared (1100 to 2500 nm). Sensors operat-
ing in these bands detect reflected light which is used to discriminate an
object from its background and to classify it based on spectral character-
istics. Spectral sensors capitalize on the color difference between objects
and the background. A color video camera that divides the reflected light
into red, green, and blue components is thus a simple spectral sensor.
More complicated sensors break the spectrum into finer and finer bands
and/or selectively tune to bands appropriate for a specific object or back-
ground. In general, a multispectral sensor, illustrated in Figure 1, is
defined as a sensor using two to tens of bands, while a hyperspectral sen-
sor, illustrated in Figure 2, is defined as a sensor using tens to hundreds
of bands. Spectral sensors are divided into four types or approaches.
Currently, the most common type is the "pushbroom" hyperspectral sen-
sor. In this approach (Figure 2), a single line is imaged through a dispers-
ing element so that the line is imaged in many different bands (colors)
simultaneously. A second spatial dimension is realized through sensor
motion. A second type is a multispectral filter wheel system in which a
scene is imaged consecutively in multiple bands. A third type images
multiple bands simultaneously using multiple chips (or multiple areas on
the same chip). This approach uses multiple apertures or a splitting tech-
nique, such as a series of dichroic prisms or a tetrahedral mirror or lens.
The fourth approach is the use of a Fourier transform spectrometer. The
product of any of these sensors is an image cube as illustrated in Figure 3.

Hyperspectral Imaging at SSC San Diego
SSC San Diego has supported a number of hyperspectral programs over
the last several years for a variety of government agencies, including the
Defense Advanced Research Projects Agency (DARPA), the Spectral
Information and Technology Assessment Center (SITAC), the Office of
Naval Research (ONR), the Office of the Secretary of Defense (OSD),
and the High Performance Computing Management Office (HPCMO).
We have worked on DARPA’s Adaptive Spectral Reconnaissance
Program (ASRP), the goal of which was to demonstrate the detection of
concealed terrestrial military targets and the cueing of a high-resolution
imager. For ONR, we have been involved with maritime applications of
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hyperspectral sensors. Under
OSD sponsorship, we have
demonstrated the capabilities of
hyperspectral remote sensing for
search and rescue applications.
For SITAC, we have provided
ground truth measurements of
ocean optical properties and illu-
mination required for controlled
experiments, and we have analyzed
the bands required for optimal
ocean imaging. The HPCMO is
sponsoring our work to develop
scalable and portable implementa-
tions of the ASRP algorithms.
Under ONR and SSC San Diego
In-house Laboratory Independent
Research (ILIR) funding, we have
developed new and enhanced
methods for hyperspectral analy-
sis and exploitation. Highlights of
these efforts are described in more
detail below. 

Terrestrial Hyperspectral
Remote Sensing 
The DARPA ASRP successfully
demonstrated the capability to
detect military targets of interest
in real time by using an airborne
hyperspectral system to cue high-
resolution images for ground
analysis. SSC San Diego led all
research, development, coding,
and implementation of the end-
to-end processing and critical
hyperspectral detection and
recognition algorithms. The algo-
rithms and processing architecture
developed are applicable to a
broad scope of missions, targets
of interest, and platform architec-
tures. ASRP pushed the state of
the art beyond simple detection of
targets in the open, making detec-
tion of difficult, realistically posi-
tioned targets possible at low false
alarm rates. Figure 4 shows the
difficult environment, used by
ASRP for real-time hyperspectral
system demonstrations, that may
be encountered during military
operations. The variety of natural
and man-made materials and the
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FIGURE 1.  Schematic of three-band multispectral imaging camera.
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FIGURE 2.  Schematic of a pushbroom dispersive hyperspectral sensor.

FIGURE 3.   Hyperspectral image cube's cross-track, 1; along track, 2; and spectral
dimension, 3.
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variability of illumination com-
bine to form a highly complex
spectral detection challenge.
Figure 5 compares the visibility
of two targets in high-resolution
imagery (top), in a red-green-blue
(RGB) image (middle), and in the
output of a detection statistic 
(bottom). These detections exem-
plify the ability of the hyperspectral
system to identify target positions
even when they may not be evi-
dent in traditional high-resolution
imagery. 

The High Performance Computing
Management Office (HPCMO)
has funded SSC San Diego, as part
of the Hyperspectral Information
Exploitation Project, to imple-
ment the ASRP hyperspectral
algorithm suite and end-to-end
processing on high-performance
computer (HPC) platforms in a
portable, scalable architecture
accessible by a wide variety of
Government users. Parallel pro-
cessing capabilities will provide a
new dimension for hyperspectral
processing, allowing multiple
hyperspectral algorithms to opti-
mize target detection and recogni-
tion on massive data sets.

Maritime Sensor Systems
SSC San Diego has been instru-
mental in initiating and demon-
strating the use of hyperspectral
imagery for surveillance of the lit-
toral. In 1996, SETS Technology,
working with SSC San Diego, flew
the SETS Technology Advanced
Airborne Hyperspectral Imaging
System (AAHIS) over submarines
at the Pacific Missile Range
Facility northwest of Kauai. The
results of these flights led to the
Littoral Airborne Sensor Hyper-
spectral (LASH) program. 

LASH is an integrated optical sen-
sor system that uses pushbroom
scanning for the detection of sub-
marines in the littoral environment.
The LASH system consists of a

FIGURE 4.  Three-color image of an ASRP
hyperspectral image.

FIGURE 5.  These figures show a high-resolution panchromatic
imager (6-inch ground sample distance [GSD]) [top], and RGB
image created from three hyperspectral bands (1-meter GSD)
[middle], and one hyperspectral algorithm detection statistic image
[bottom] for two different targets hidden along tree lines in shadow.
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passive hyperspectral imager (HSI) assembly, an image processor, a data
storage (archival) unit, a data display unit for operator use that incorpo-
rates the system monitoring, and control functions. The system is inte-
grated into a modified ALE-43 (chaff cutter and dispenser pod) and
mounted on a standard pylon at wing station 12 (Figure 6). All principal
elements of the LASH system are contained within the pod. The units
installed within the aircraft itself are limited to the system display proces-
sor, the power interface to the aircraft, the operator controls, and a global
positioning system (GPS) antenna. This design was established to provide
a system that could be considered independent of the individual aircraft
tail number. It is estimated that all of the internal aircraft mounted units
could be installed in less than 2 hours if necessary. 

The passive and stabilized hyperspectral sensor collects both spatial (770
pixels) and spectral data (up to 288 pixels) on each instantaneous image
increment. The data are binned by 2 spatially and 6 spectrally to give 385
spatial and 48 spectral channels. This imaged data is framed at 50 Hz,
with each frame covering a 40-degree lateral field of view and approxi-
mately a 0.06-degree (1 milli-radian) field of view in the direction of
flight. The data are simultaneously recorded in the archival storage sys-
tem, processed by the image processor, and presented in a pseudo-color
waterfall display to the operator. The processing system evaluates the
data sensed in near real time using both spectral and spatial processing,
and it provides a "frozen" display of the target along with its position in
longitude and latitude. A stabilization system automatically adjusts the
sensor so that it compensates for aircraft roll, pitch, and yaw. A "point to
track" option forces the stabilization system to point the sensor along a
predetermined track (otherwise the sensor points directly down). 

These sensors can perform a wide range of ocean sensing tasks. Targets
range from submarines and sea mines for military applications, to chlorophyll
and sediment load in physical oceanographic applications, to schools of
dolphins and whales in marine biology applications. Figure 7 demon-
strates the ability of the sensor to image a pod of humpback whales. In
these applications and others, a common goal is to detect an extremely
low-contrast target in a high-clutter background.

Ocean Environmental Measurements
Hyperspectral systems such as LASH are being developed that use spec-
tral and spatial processing algorithms to discern objects and organisms
below the sea surface. The performance of such systems depends on envi-
ronmental and optical properties of the sea. An instrument suite, the
Portable Profiling Oceanographic Instrument System (PorPOIS), was
developed to ascertain and quantify these environmental and hydro-optic
conditions. Profiling of the downwelling irradiance leads to a value of the
diffuse attenuation coefficient, kd, for the water column. Measurements
of the beam absorption, a, and attenuation, c, provide information about
the non-pure water absorption and scattering characteristics of the water.
Measurement of the backscatter at different wavelengths determines what
fraction of the downwelling photons is scattered back toward space.
These and a number of other measurements made by PorPOIS allow for
a thorough characterization of the water body. These data are used in the
LASH program to optimize parameters of the processing algorithms and
to predict the performance of the sensor by using modeling software that
requires these oceanographic data as inputs. 

FIGURE 6.  LASH pushbroom hyper-
spectral imager mounted on the wing of
a P3 aircraft.

FIGURE 7.  A pod of humpback whales
imaged using the AAHIS sensor,
a precursor to LASH.
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The PorPOIS system is deployed on two submersible cages and a surface
data-gathering station. The instruments are controlled and the data col-
lected on a laptop computer running a Windows-based control and data
acquisition software package, the Sensor Interface Display (SID), developed
at SSC San Diego. The instruments (Figure 8) used to measure surface
conditions and ship location include a wind transducer (anemometer),
a magnetic compass, a surface irradiometer, and a GPS receiver. There are
currently seven instruments used to measure optical and environmental
conditions below the sea surface. These instruments include a down-
welling and upwelling irradiometer (Biospherical Instruments PER600
and PER700), an upwelling radiometer (PER600), a transmissometer
(Seatech), an absorption and attenuation meter (WETLabs ac-9), a
conductivity-temperature-depth (CTD) (SeaBird Electronics SBE-19), a
fluorometer (WETStar), and a backscattering meter (HobiScat-6). The
devices are bundled in a single beehive-type stainless-steel profiling cage
as shown in Figure 9. The cage is suspended from a davit via the under-
water cable. The SeaBird SBE-32 carousel water sampler (Figure 10)
holds twelve 2.5-liter bottles and the SBE-19 CTD. It uses the same
underwater cable as the profiling cage. Deployment of the cage is nearly
identical to that of the instrument cage. A deck unit mounted in the con-
trol rack translates the CTD information from the carousel and transfers
the data to SID. This allows the user to capture water samples from target
depths by monitoring the position of the carousel as it travels through
the water column. New instruments can be added to the configuration as
required.

Sample PorPOIS products are shown in Figures 11 and 12. Figure 11
shows downwelling irradiance at 490 nm measured off San Clemente
Island, CA. These data are used to determine the rate of attenuation of
irradiance at 490 nm, k490, as shown in Figure 12. Optical depth, 1/kλ,
is defined as the depth at which surface irradiance of wavelength λ
diminishes by 1/e. System performance is parameterized in terms of
optical depth.

SSC San Diego ILIR and ONR-sponsored
Research on Hyperspectral Algorithms
Pre-processing transforms are a common initial step in the processing of
hyperspectral imagery that is performed in order to determine spectra of
the fundamental constituents of the scene or for data compression. The
principal component transform is based on minimizing loss in mean-
square error, and the vector quantization (VQ) transform is based on
minimizing the worst-case angle error between a datum and its projection
onto a subspace. These transforms may have unintended consequences on
the signal-to-noise ratio (SNR) of a target of interest. We have evaluated
the loss in SNR that may result from applying a linear transform and
developed several new transforms that use different knowledge of the sig-
nals of interest to reduce the loss in SNR in comparison with commonly
applied transforms. Figures 13 and 14 illustrate the detectability of an under-
water target in data that has been transformed using vector quantization 
and one of the newly defined transforms, whitened vector quantization
(WVQ), that uses no signal information. Clearly, the WVQ algorithm can
reduce the dimension of the data and preserve the target SNR for these

FIGURE 9.  Submersible cage containing
instruments used to measure ocean
optical properties.

FIGURE 8.  The Biospherical Instruments
PRR-610 surface irradiometer, the
NEXUS wind transducer, and the
NEXUS magnetic compass are used
to measure surface conditions.

FIGURE 10.  Submersible cage containing
a CTD and water collection bottles used
to measure absorption and scattering as
a function of depth.
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FIGURE 12.  Rate of attenuation of downwelling irradiance at 490 nm
derived from PorPOIS measurements of downwelling irradiance.
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FIGURE 11.  Plot of downwelling irradiance at 490 nm as a function
of depth as measured using PorPOIS in waters off San Clemente
Island, CA.

data. The transformed data are processed here
with the Reed-Xioali (RX) quadratic anomaly
detector. The enhanced discrimination of the
target at lower dimension using the WVQ
algorithm arises from the fact that the per-
formance of quadratic detectors improves
for a given SNR if the dimension is reduced. 

Linear unmixing and image segmentation are common means of analyz-
ing hyperspectral imagery. Linear unmixing models the observed spectra
as

d d
yij = � ak

ijek , such that � ak
ij ≤ 1 and 0 ≤ ak

ij ≤ 1.
k=1 k=1

The spectral vectors, ek are known as endmembers, and ak
ij is the abun-

dance of the kth material at pixel (i,j). There are several means available
for estimating the endmembers. The abundances are usually estimated by
solving the constrained least-squares problem. 

Image segmentation typically models the observation vector as arising
from one of several classes, such that each class has a multi-variate normal
distribution. The number of classes, d, is selected and the mean and
covariance of the classes {(
�k, Σk) | 1 ≤ k ≤ d} are estimated from the
hyperspectral data. The expectation maximization and the stochastic
expectation maximization algorithm are two methods of estimating these
parameters. Given the parameters and the probability of each class, the
data may be classified by assigning yij to the class that, conditioned on
the observation, is most likely. This computation is carried out using
Bayes Law. 
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We have generalized the linear unmixing and image segmentation
approaches in the development of the stochastic compositional model.
We assume an A×B image of multivariate date: yij �Rn, 1 ≤ i ≤ A, 1 ≤ j ≤ B.
The stochastic compositional approach models each observation vector as
a constrained linear combination of normally distributed random variables.
Let d be the number of classes, and let N(
k, Σk), 1 ≤ k ≤ d denote the
normal distribution with mean 
k and covariance Σk then

d d
yij = � aij xij such that xij ~ N(
k, Σk), 0 ≤ aij ≤ 1, and � aij = 1. (1)

k=1  k   k k k k=1  k

To account for scalar variation in the illumination, we also consider the
model that uses an inequality constraint:

d d
yij = � aij xij such that xij ~ N(
k, Σk), 0 ≤ aij ≤ 1, and � aij ≤ 1. (2)

k=1  k   k k k k=1  k

For given parameters (
k, Σk), 1 ≤ k ≤ d, and given abundances
d

� =(a1,…,ad), let (dropping the pixel indices) 
(�) = � ak 
k, and
d k=1 

Σ(�) = � ak
2Σk. Then, yij ~ N(
(�),Σ(�)). Maximum likelihood abundance

k=1

estimates are thus obtained by solving

^ 1                 -1
�ij = arg(max(––––––––––––––exp�––(yij–
(�))Σ(�)-1(yij–
(�))�. (3)

|Σ(�)|0.5 (2�)
n/2 2

FIGURE 13.  The RX algorithm applied to VQ-transformed 48-band
hyperspectral imagery transformed to 48, 36, 20, 12, 9, and 7
dimensions (A through F, respectively).
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FIGURE 14.  The RX algorithm applied to WVQ-transformed 48-band 
hyperspectral imagery transformed to 48, 36, 24, 8, 4, and 2
dimensions (A through F, respectively).
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Let X = (x1,…,xd); the maximum likelihood estimates of the decomposi-
tion of the observation into contributions, xk from the classes is obtained
by solving 

^
X = arg(max(p(X | y,�,
k,Σk)))

d
1                   -1=arg� max� –––––––––––––exp�––(xk - 
k)�Σk

-1(xk - 
k)���
k=1 (2�)

n/2 |Σk |1/2          2

d
such that y = � akxk .                                                                 (4)

k=1

The stochastic compositional model and deterministic linear unmixing
have been compared by using simulated hyperspectral imagery. Class sta-
tistics were estimated from hyperspectral imagery by using the stochastic
expectation maximization algorithm. Using these parameters, a set of
simulated hyperspectral imagery was generated so that the mixing pro-
portions of the classes were known. The test data were then unmixed by
using both deterministic unmixing (with the class means as endmembers)
and by stochastic compositional modeling, such that the class parameters
were estimated using the expectation maximization algorithm. Figure 15
compares the error in the abundance estimates of one of the classes using
the two methods. In this example, the stochastic compositional model
reduces the abundance estimation error by a factor of two to three. Work
is ongoing to compare the performance of detection algorithms emanat-
ing from the segmentation, linear unmixing, and stochastic compositional
models. 
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FIGURE 15.  A comparison of the absolute error in the abundance
estimate using linear unmixing and stochastic compositional
modeling.
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SUMMARY
SSC San Diego has been involved in many aspects of hyperspectral
imaging. We are making important contributions in the areas of real-time
processing implementations, system design for a variety of missions,
environmental characterization, and the development of new models and
methods. SSC San Diego is continuing to work across the Department of
Defense (DoD)/Intelligence communities to bring mature hyperspectral
technologies to the warfighter, making this unique source of critical
information more widely available and user friendly.
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